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Abstract

Understanding the causes of spatial variation in species richness is a major research focus

of biogeography and macroecology. Gridded environmental data and species richness

maps have been used in increasingly sophisticated curve-fitting analyses, but these

methods have not brought us much closer to a mechanistic understanding of the

patterns. During the past two decades, macroecologists have successfully addressed

technical problems posed by spatial autocorrelation, intercorrelation of predictor

variables and non-linearity. However, curve-fitting approaches are problematic because

most theoretical models in macroecology do not make quantitative predictions, and they

do not incorporate interactions among multiple forces. As an alternative, we propose a

mechanistic modelling approach. We describe computer simulation models of the

stochastic origin, spread, and extinction of species� geographical ranges in an

environmentally heterogeneous, gridded domain and describe progress to date regarding

their implementation. The output from such a general simulation model (GSM) would,

at a minimum, consist of the simulated distribution of species ranges on a map, yielding

the predicted number of species in each grid cell of the domain. In contrast to curve-
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fitting analysis, simulation modelling explicitly incorporates the processes believed to be

affecting the geographical ranges of species and generates a number of quantitative

predictions that can be compared to empirical patterns. We describe three of the �control

knobs� for a GSM that specify simple rules for dispersal, evolutionary origins and

environmental gradients. Binary combinations of different knob settings correspond to

eight distinct simulation models, five of which are already represented in the literature of

macroecology. The output from such a GSM will include the predicted species richness

per grid cell, the range size frequency distribution, the simulated phylogeny and

simulated geographical ranges of the component species, all of which can be compared

to empirical patterns. Challenges to the development of the GSM include the

measurement of goodness of fit (GOF) between observed data and model predictions, as

well as the estimation, optimization and interpretation of the model parameters. The

simulation approach offers new insights into the origin and maintenance of species

richness patterns, and may provide a common framework for investigating the effects of

contemporary climate, evolutionary history and geometric constraints on global

biodiversity gradients. With further development, the GSM has the potential to provide

a conceptual bridge between macroecology and historical biogeography.
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I N T R O D U C T I O N

If a Cartesian grid is superimposed on the earth�s surface,

counts of species richness within each grid cell will not be

uniform or distributed randomly in space. For many taxa,

species richness is correlated with geometric and geograph-

ical properties of the grid cells – their surface area, isolation,

latitude, longitude, and elevation or depth. These properties

are themselves often correlated with grid-cell measures of

contemporary climate, such as average temperature and

annual precipitation. Understanding the mechanistic basis of

these patterns remains the holy grail of modern biogeog-

raphy and macroecology (Willig et al. 2003). This �richness

problem� has been studied for over two centuries (Forster

1778; Wallace 1878; Rosenzweig 1995), and over 100

ecological and evolutionary hypotheses have been proposed

to resolve it (Rohde 1992; Palmer 1994). Because of the

large spatial grain and extent of these patterns, experimental

approaches are rarely possible, and we must infer mecha-

nisms from modelling and statistical analyses (Diamond

1986). Correlative procedures for analysing macroecological

data have become increasingly sophisticated and powerful,

but we are not necessarily getting much closer to a definitive

understanding (Rohde 1992; Willig et al. 2003).

In this paper, we briefly review the �curve-fitting�
approach that has dominated contemporary analyses of

species richness data. We argue that more mechanistic

approaches that model the origin and spread of species

geographical ranges in a heterogeneous landscape offer a

potentially more powerful framework for investigating

species richness and associated macroecological patterns.

This general simulation model (GSM) is a relatively simple

form of pattern-oriented modelling (Grimm et al. 2005), in

which a bottom-up model is used to predict system-level

properties. In this paper, we describe a GSM for macroe-

cology: a general stochastic modelling framework for

simulating processes such as speciation, dispersal and

extinction in a heterogeneous landscape.

T H R E E G R I D D E D D A T A L A Y E R S

Three kinds of data layers are typically used to analyse

spatial patterns of species richness: (1) a gridded map of a

biogeographical domain, such as a continent or biocli-

matic region; (2) species occurrence records within each

grid cell of the domain; and (3) a set of contemporary (or

increasingly, historical or future) environmental variables

measured for each grid cell in the domain, such as

average temperature, net primary productivity or topo-

graphic relief. These data layers are used in analyses of

species richness patterns and form the inputs to the

GSM.

874 N. J. Gotelli et al. Idea and Perspective

� 2009 Blackwell Publishing Ltd/CNRS



Although beyond the scope of this paper, we note that

many potential sources of error are associated with each

data layer, and that the effect of these errors will probably

vary with the spatial scale of the analysis. Recent studies

have begun to explore the effects of measurement errors

(e.g. Scott et al. 2002; Mathias et al. 2004; Guralnick & Van

Cleve 2005; Hurlbert & Jetz 2007). However, in most

analyses, process and measurement error are not distin-

guished, and they are pooled into a single error term. For

now, we take the same approach and assume that, for high-

quality data sets analysed at an appropriate spatial scale, the

underlying biogeographical signal of the data is not seriously

distorted by inevitable uncertainty in the data layers. Explicit

modelling of the processes that give rise to sampling errors

is a promising avenue for future research.

C U R V E - F I T T I N G A N A L Y S E S O F S P E C I E S R I C H N E S S

P A T T E R N S

How are the three kinds of data layers (gridded domain,

species occurrences and environmental variables) typically

analysed? Until recently, the most common approach has

been to treat each grid cell as an independent sample, and

then search for correlations between species richness and

climate variables within the domain. For example, a simple

linear regression of species richness of South American

birds with net primary productivity (Rahbek et al. 2007)

accounts for 44% of the variation in species richness among

1 · 1 degree grid cells (Fig. 1). This curve-fitting approach,

which typically uses linear functions and log-transformed

data, has characterized hundreds of published analyses that

invoke measures of contemporary climate as arguably causal

mechanisms of patterns in species richness. The strength of

the mechanism is often inferred from the GOF (usually

measured by r2), and by the frequency of studies that show

such patterns. For example, Hawkins et al. (2003) concluded

from a meta-analysis that 83 of 85 studies strongly

supported some aspect of the water-energy hypothesis,

because species richness was significantly correlated with

grid-cell measures of temperature or precipitation. In single-

factor regression analyses, climatic variables explained on

average 60% of the variation in species richness in

continental areas (Hawkins et al. 2003).

L I M I T A T I O N S O F C U R V E F I T T I N G

The technical challenges of spatial autocorrelation (Rangel

et al. 2006), inter-correlated predictor variables (Mac Nally

2002), nonlinear responses of species richness to environ-

mental variables (Mittelbach et al. 2001) and effects of

spatial scale (Nogués-Bravo et al. 2008) have defined much

of the research programme in macroecology for the past

decade. Curve-fitting analyses have successfully identified

repeated patterns of correlation between species richness

and climatic variables. However, this extensive curve-fitting

activity has not led to satisfying explanations for the

underlying causes of species richness gradients (Currie et al.

2004).

As noted by Currie et al. (1999), the core problem is that

most hypotheses to account for large-scale variation in

species richness are specified so vaguely that they do not

predict anything more precisely than a qualitative latitude–

richness correlation (which served to motivate many of the

hypotheses in the first place) or a simple correlation of

species richness with measures of contemporary climate

(which does not lead to unique predictions for different

hypotheses). Notable exceptions include the species energy

model (Wright 1983), the mid-domain effect (Colwell &

Lees 2000) and metabolic theory (Allen et al. 2002), all of

which have recently been used to derive quantitative

predictions of species richness patterns and to test those

predictions with empirical data (Jetz & Rahbek 2001; Currie

et al. 2004; Hawkins et al. 2007). A second problem is that

both contemporary and historical factors influencing species

richness are likely to interact in complex ways. We lack a

body of theory to explain how these mechanisms will

interact. Although causal modelling (Shipley 2009) is a

potential approach to this problem, it has rarely been used in

macroecology. The more common approach of using simple

or multiple regression analysis is not an effective way of

dealing with multicollinearity (Burnham & Anderson 2002).

A final problem with curve-fitting is that the response

variable in the statistical model – species richness per grid

cell – is the total number of species whose geographical

ranges overlap each grid cell in the domain. A mechanistic

understanding of species richness patterns should be based

on modelling the actual species ranges themselves, rather

Figure 1 Linear regression of species richness of South American

endemic birds vs. net primary productivity (NPP) (r2 = 0.44,

P < 0.001). Each point represents a single 1� · 1� latitude–

longitude grid cell (n = 1676) (data from Rahbek et al. 2007).
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than the aggregate variable of their summed overlap in each

grid cell. The GSM directly addresses all three of these

problems: it generates quantitative predictions of species

richness per grid cell, incorporates multiple interacting

processes and models species ranges directly.

B I O C L I M A T I C D I S T R I B U T I O N M O D E L L I N G

S T R A T E G I E S

Bioclimatic species distribution models (Pearson & Dawson

2003; Elith et al. 2006) use occurrence data to infer the

environmental niche limits of a species, employing a variety

of model-fitting tools (Thuiller 2003; Latimer et al. 2006)

and validation criteria (Araújo et al. 2005). Although

bioclimatic species distribution models are essentially a

form of sophisticated curve fitting, they are becoming more

mechanistic (Thuiller et al. 2008). Recent models have

incorporated processes such as dispersal and extinction

(Iverson et al. 2004; De Marco et al. 2008), and have been

coupled with stochastic population models (Keith et al.

2008). As species distribution models become more

mechanistic, they converge in strategy with the modelling

approach we advocate here.

Why not, then, simply apply bioclimatic species distribu-

tion models to each species in an assemblage, and then sum

the predictions for each grid cell to derive expected species

richness (McPherson & Jetz 2007; Fitzpatrick et al. 2008)?

The primary reason we do not pursue this approach is that it

requires estimating potentially hundreds of parameters as

each species distribution is fitted, optimized and �trimmed�
using historical and ecological considerations. In contrast,

we prefer a modelling strategy in which a set of similar, but

not identical, species are modelled with a much smaller

number of parameters (perhaps less than a dozen). An

intermediate strategy for characterizing variation among

species would be a �random effects� model in which species

differences are characterized by a probability distribution for

each model parameter, or a model in which species are

assigned to different functional groups, each with a different

set of specified parameter values.

Of course, these deliberate simplifications can introduce

other problems. For example, estimating dispersal with a

single dispersal kernel for all species might give very

different results from a model in which the dispersal kernel

for each species was estimated separately. Colwell et al.

(2009) have shown that, even in a homogeneous domain

with a simple Poisson dispersal kernel, there is a strong

interaction between dispersal distance l and geographical

range size in their effects on species richness per grid cell. At

small and intermediate, but identical, range sizes, a simple

spreading dye model produces complex species richness

patterns that do not resemble a simple mid-domain effect

(Colwell et al. 2009). These effects of range size would be

more accurately represented with separate parameters for

each species in an assemblage than with a model that treats

all species identically.

However, we can point to several examples of important

models in ecology, including equilibrium theory (MacArthur

& Wilson 1967), neutral theory (Hubbell 2001) and the

metabolic theory of ecology (Brown et al. 2004), that assume

species are �similar� and are fitted with common parameters.

These models have been surprisingly successful at explain-

ing many patterns in large multi-species assemblages.

Indeed, the underlying premise of macroecology is that

much of the variation in species assemblages is driven by

only a small number of deterministic forces that can be

described with simple stochastic equations (Brown 1995;

Maurer 1999).

Finally, suppose the bioclimatic species distribution

modelling perspective is correct, and the distribution of

each species in nature must be represented by a unique

model with parameters that are distinct from those of other

species in the assemblage. If this were true, the resulting

pattern of species richness might be expected to be complex

and highly variable, but would not necessarily correlate very

well with environmental or geographical variables because

the predicted set of optimum conditions would be different

for each species. In fact, the species richness of many

taxonomic groups correlates very strongly with latitude,

longitude, elevation, and a suite of associated environmental

variables (Rosenzweig 1995). For the same reason that

macroecologists have been successful in using curve-fitting

models to describe species richness as a function of water

and energy variables (Hawkins et al. 2003), we believe there

is merit in pursuing a modelling approach that does not

focus on idiosyncratic differences among species.

M E C H A N I S T I C S I M U L A T I O N M O D E L S F O R

S P E C I E S R I C H N E S S P A T T E R N S

To overcome the limitations of the curve-fitting approach,

and to avoid the unwieldy strategy of predicting species

richness by stacking species distribution models for indi-

vidual species, we propose a third alternative: mechanistic

models that simulate speciation, dispersal and extinction of

species in a heterogeneous landscape (represented as a

gridded domain). Simulation models are characteristically

probabilistic and stochastic, so that multiple iterations of the

same model can be used to empirically estimate the expected

number of species (and its variance) in each grid cell of the

domain, under the conditions of the model. A comprehen-

sive, GSM must be flexible enough to incorporate and

adjust major driving mechanisms of contemporary, past or

future climates, evolutionary and historical forces, and

geometric constraints. These mechanisms can be accom-

modated in a single GSM, potentially providing a common
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framework for investigating hypotheses about the relative

influence on species richness of geometric constraints,

climatic factors and historical processes.

However, the GSM poses some new challenges. It forces

an explicit consideration of the precise rules that govern the

origin of species and the expansion of their geographical

ranges in a bounded domain, and it requires an estimate of

the parameters that control these processes. Because the

GSM approach predicts species richness patterns as they

arise from the overlap of species ranges, the mechanisms by

which range dynamics occur must be explicitly defined and

coded as computer algorithms that operate with a specific

time step and in a logical sequence.

The algorithms in the GSM represent a set of rules that

govern the location, probability and mechanism of specia-

tion, the inheritance of niche characteristics by each new

species from its immediate ancestor, and the ability of each

species to disperse to new grid cells and successfully

colonize them based on their environmental characteristics.

The model could be run for a given number of evolutionary

time steps, until a particular number of species ranges are

simulated, or until a balance between speciation and

extinction is achieved, leading to a stationary distribution

of species richness.

C O N T R O L K N O B S O F T H E G S M

Each algorithm or procedure in the GSM can be thought of

as controlled by a rotary knob, switch or dipswitch

(Rosenzweig & Abramsky 1997). The setting of the control

knob specifies the value of either a continuous parameter

(e.g. like a water faucet) or a discrete multi-state parameter

(e.g. like an automobile headlight switch). Even a relatively

simple model might have a dozen such control knobs. For

purposes of discussion, it is useful to think of one of the

settings on each knob as a �ground� or �null� state (the �off�
position on the water faucet or the headlight switch) that

represents a parsimonious or unconstrained condition for

the process. As an illustration, we consider just three of the

control knobs in a GSM and their possible settings: dispersal

distance, evolutionary origins and environmental gradients.

Dispersal limitation

This control knob specifies limits on the distance, in grid-

cell units, that each species is able to disperse in a single time

step of the model, thereby potentially colonizing a grid cell

that it does not already occupy. The �ground state� for this

control knob would be dispersal within the domain that is

unconstrained by distance, so that a species could potentially

reach any grid cell in the domain in a single dispersal event.

Many models in macroecology fit this scenario (Brown

1995); they describe assemblages for which species richness

is ultimately determined by energetic constraints and other

factors operating within a grid cell, unconstrained by the

ability of species to reach those grid cells (Brown et al.

2004). At the other extreme, initial models of the mid-

domain effect (Colwell & Lees 2000) invoked strict range

cohesion, so that species� geographical ranges could spread

only through contiguous, unoccupied grid cells. This

constraint may reflect many biologically realistic processes

that limit range expansion at smaller spatial scales, including

environmental heterogeneity (Connolly 2005), strong dis-

persal limitation (Swenson & Howard 2005), source–sink

dynamics (Curnutt et al. 1996) and metapopulation structure

(Keitt et al. 2001). Between the extremes of unconstrained

dispersal and strict range cohesion, the dispersal limitation

control knob could be set to allow for dispersal across

intervening grid cells (e.g. Rangel & Diniz-Filho 2005b;

Dunn et al. 2006; Colwell et al. 2009). Patch dynamics

models reflect cases in which the intervening habitat is

unsuitable for colonization (Connolly 2005).

The shorter this dispersal distance, the more closely the

model will resemble the range cohesion model, and the

longer the dispersal distance, the more closely the model will

resemble unconstrained, spatially homogeneous dispersal.

The longer the dispersal distance, the more holes or

discontinuities will be generated in each species� geographi-

cal range. Alternatively, patchy distributions could also arise

in models with contiguous range expansion if local

extinction is allowed to occur within occupied grid cells

(Bokma et al. 2001; Davies et al. 2005; Rangel & Diniz-Filho

2005b; Connolly 2009). We have had good success with a

simple dispersal model in which dispersal distances follow a

Poisson distribution with a common dispersal parameter l
for all species in the assemblage (Gotelli et al. 2007; Colwell

et al. 2009). Modelling dispersal in this way allows for

occasional long-distance dispersal events, but requires the

investigator to make decisions about which occupied grid

cells are more likely to serve as dispersal sources. Does

dispersal depend on the environmental conditions in the

source and ⁄ or the target grid cell, or does it depend on the

location of the source cell within the currently occupied

range (edge vs. interior grid cells)? What is the fate of

propagules targeted to disperse beyond the edge of the

domain? Are these propagules �lost� or can they �stop short�
to colonize unoccupied cells at the edge of the domain?

If the grid cells in the domain are fairly large, a model of

contiguous dispersal into adjacent cells may be more

appropriate. In this case, the algorithm is similar to cellular

automata, with rules specified for spreading into the

adjacent four or eight cells (von Neumann or Moore

neighbourhoods respectively). In preliminary trials (N.J.

Gotelli, unpublished data), both methods give similar

results, although the eight-cell Moore neighbourhood is

more efficient and leads to less porous species distributions.
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Evolutionary origins

This control knob sets the number of independent

evolutionary origins for modelling the biota. The ground

state of this control knob defines n independent evolution-

ary origins for a biota of n species. The origin of each

species is a unique event, and evolutionary history (i.e. the

position of the geographical range of the ancestor species)

does not have an influence on the resulting pattern.

Moreover, niche inheritance and niche conservatism (Losos

2008) are not explicit in this model: the niche of each

species is independent of the niche of all other species. Most

existing range-based models of species richness (Jetz &

Rahbek 2001; Grytnes 2003; Connolly 2005; Storch et al.

2006; Rahbek et al. 2007) treat the origin of each species as

an independent event.

At the other extreme, a single evolutionary origin might

initiate an entire clade that is distributed within a domain. In

this class of models, each new species originates only within

(or adjacent to) the geographical range of its ancestor.

Evolutionary history potentially influences the pattern of

species richness, and the model generates not only the

expected species richness per grid cell but also a phylogeny,

both of which could be compared to empirical data. Bokma

et al. (2001), Rangel & Diniz-Filho (2005a), Rangel et al.

(2007) and Roy & Goldberg (2007) provide examples of

such evolutionary models that include a single ancestral

taxon that gives rise to a set of n extant taxa within a

domain. As our understanding of the evolutionary relation-

ships and biogeographical history of real organisms

improves, it will become possible to set empirical values

for the n independent origins parameter. For example,

Pennington & Dick (2004) estimated that up to 20% of tree

taxa in a sample of an Ecuadorean forest were members of

clades descended from long-distance immigrants from

Africa.

The algorithmic details will need to address the geo-

graphical mode of speciation. If speciation is sympatric or

from long-distance dispersal (peripheral isolates), then the

algorithm must specify the cell of origin and the dispersal

kernel. If speciation is allopatric, then the algorithm must

specify how existing geographical ranges are fragmented and

whether the probability of fragmentation depends on

measured environmental variables. Rangel et al. (2007)

successfully used a stochastic sine-wave function to simulate

climate change and fragment ranges in an evolutionary

model. These authors also used two simple, stochastic

variables to control the �heritability� of the environmental

niche from ancestor to descendant taxon – one for the niche

centre in niche space and the other for niche breadth. The

niche centre parameter encompassed the extremes between

perfect niche conservatism (the daughter taxon retains the

environmental niche centre of the parent taxon) to rapid

evolutionary adaptation (the niche centre of the daughter

taxon evolves to match the mean environmental conditions

of the parental range fragment from which the daughter

originates). The niche breadth parameter controls the range

of conditions tolerated around the niche centre.

Environmental gradients

This control knob determines whether speciation, dispersal

or extinction are equiprobable among grid cells or depend

on particular environmental variables. Although most

analyses and discussion of environmental variables focus

on contemporary climate, new reconstructions of paleocli-

mates (Brewer et al. 2007; Salzmann et al. 2008) and paleo-

richness (FAUNMAP 2009) may provide data for realistic

historical models that can be analysed with the GSM.

Several control knobs may be necessary because the

environmental factors that affect speciation might not be

the same ones that determine dispersal or extinction. For

terrestrial biotas, temperature and precipitation are two

variables that are important correlates of large-scale patterns

of species richness, and therefore are likely candidate

variables for the cell-by-cell weighting of dispersal and net

speciation rates. The water-energy model provides an

emerging framework that may eventually yield functional

forms for water and energy variables derived from first

principles of physiology and physical constraints (O�Brien

2006). For now, however, these models are either concep-

tual only (Vetaas 2006; McCain 2007) or derived from

regression parameters fitted to particular data sets (O�Brien

1998). Regardless of the details of the algorithms that

determine the way in which climate affects the size and

location of geographical ranges, the ground state of this

control knob is a model in which all grid cells are

equiprobable within a pre-defined geographical domain

and zero elsewhere.

M O D E L V A R I A T I O N S

Thus far, our simplified GSM has three control knobs

(dispersal distance [DD], evolutionary origins [EO] and

environmental gradients [EG]) that specify some key

algorithms for simulating geographical ranges of species. If

we consider each control knob in its dichotomous off-on

settings (where �off� represents the ground state), we

generate a set of eight qualitatively different kinds of

simulation models (Table 1). Five of these models corre-

spond well with recently published analyses and large-scale

simulations.

The simplest model, with all three control knobs in the

ground state [0-0-0; no dispersal limitation, n-evolutionary

origins, equiprobable environments], would yield a Poisson

distribution of species richness per grid cell because each
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species occurrence is placed randomly, equiprobably and

independently throughout the domain. This model corre-

sponds to the statistical null hypothesis that is tested in

many regression and curve-fitting analyses. Levins (1969)

original formulation of a single-species metapopulation

model also matches this category, as colonization occurs

among patches in a homogeneous environment with no

dispersal limitations. However, the Levins (1969) model is

dynamic, as it includes continuous local extinction and

recolonization, and it is not spatially explicit.

Imposing range cohesion and allowing each species to

originate independently, in an equiprobable environment [1-

0-0] describes the algorithm for the spreading dye model

(Jetz & Rahbek 2001), in which each species originates in a

randomly chosen grid cell, and then its range expands

randomly and equiprobably into contiguous unoccupied grid

cells until its specified range is filled. The spreading dye

model is the simplest two-dimensional simulation model of

the mid-domain effect (Colwell & Lees 2000). The analytical

models of Grytnes (2003) and Connolly (2005) also fall in

this category, although they do not constrain the frequency

distribution of range sizes to match the empirical data. This

category also includes models with partial dispersal limita-

tion in a patchy environment (Connolly 2005).

Including only the constraint of evolutionary origins [0-1-

0, a single geographical origin for all species] in an

equiprobable, but bounded environment probably will not

generate any geographical gradients in species richness,

because all cells in the domain are equivalent and are equally

accessible to colonists. However, because the origin of new

species is no longer independent of the placement of

previous species, this class of models could generate

important deviations from a Poisson distribution of species

richness and variance per grid cell.

A model with no dispersal limitation and multiple origins

but with environmental gradients that affect origination,

extinction or migration [0-0-1] is consistent with many

hypotheses that invoke contemporary climatic or environ-

mental effects (e.g. temperature, precipitation, productivity,

harshness or environmental heterogeneity) as the primary

determinants of species richness patterns. These scenarios,

described as �range scatter� models by Rahbek et al. (2007),

assume that historical and evolutionary forces are relatively

unimportant in determining patterns of contemporary

species richness. Species are potentially able to reach all

suitable grid cells within the domain, so that local species

richness is controlled by some aspects of energy or other

contemporary abiotic variables. Predictions of models in

this category would be similar to simple regression-based

analyses of species richness, which implicitly assume that

species richness within a grid cell does not depend on its

location within the domain and is determined only by those

environmental variables included in the regression model

and a stochastic error term (e.g. Hawkins et al. 2003).

Imposing a dispersal constraint on a model with

environmental gradients and multiple origins [1-0-1] pro-

duces a hybrid model that combines climatic and mid-

domain effects, leading to a spreading dye model in a

heterogeneous environment (Storch et al. 2006; Rahbek et al.

2007). For the South American avifauna, these �range

cohesion� models did a better job of predicting species

richness for wide-ranging species than did either simple

spreading dye models [1-0-0] or range scatter models [0-0-1]

(Rahbek et al. 2007).

Table 1 Knob settings of a hypothetical GSM for simulating species richness patterns in a gridded domain

Model

Dispersal

limitation

Evolutionary

origins

Environmental

gradients References

Poisson random variable 0 0 0 Implicit null hypothesis in most curve-fitting analyses (Levins 1969)

Spreading dye 1 0 0 Jetz & Rahbek (2001), Grytnes (2003), Connolly (2005)

Evolutionary origins 0 1 0

Range scatter 0 0 1 Implicit mechanistic model in most curve-fitting analyses

(e.g. Hawkins et al. 2003)

Range cohesion 1 0 1 Storch et al. (2006), Rahbek et al. (2007)

Neutral model 1 1 0 Bokma et al. (2001), Rangel & Diniz-Filho (2005b),

Davies et al. (2005), Connolly (2009)

Evolutionary origins +

environmental gradients

0 1 1

Saturated model 1 1 1 Bokma et al. (2001), Rangel & Diniz-Filho (2005a),

Rangel et al. (2007), Roy & Goldberg (2007)

Knob settings of 0 represent a �ground state� for each knob. Dispersal limitation: 0 = none, 1 = range cohesion or limited dispersal.

Evolutionary origins: 0 = n independent evolutionary origins for a fauna of n species, 1 = (< n) independent evolutionary origins, generally 1.

Environmental gradients: 0 = colonization and ⁄ or range expansion into all grid cells equiprobable, 1 = probabilistic colonization and ⁄ or

range expansion into grid cells as a function of measured environmental variables.
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Models that specify a single evolutionary origin and

dispersal limitation in an equiprobable environment [1-1-0]

capture the spirit of the neutral model (Hubbell 2001), but

differ from classic neutral models in specifying a bounded

domain. At large biogeographical scales, with strong

dispersal limitation, these models can generate mid-domain

peaks of species that are qualitatively similar to the

predictions of the spreading dye and other two-dimensional

mid-domain effect models (Rangel & Diniz-Filho 2005b).

Models that characterize speciation, colonization and

extinction dynamics at the patch scale (rather than as

individual births and deaths) also belong to this category

(evolutionary origins models of Bokma et al. 2001; Davies

et al. 2005; analytical patch occupancy models of Connolly

2009).

Models that include effects of environmental gradients

and a single evolutionary origin but no dispersal constraint

[0-1-1] have not been explored. Depending on the details of

the speciation mechanism that is modelled, the lack of a

dispersal constraint may or may not erase historical effects

that arise during speciation.

The most complex combination in the GSM proposed

here includes dispersal limitation, a single evolutionary

origin and effects of environmental gradients [1-1-1]. Rangel

& Diniz-Filho (2005a) pioneered models in this class (in one

and two dimensions), with a single, bounded, environmental

gradient or geographical mosaic; a single evolutionary origin;

and simple (peripatric) speciation and extinction rules. They

showed that the resulting pattern of species richness is a

balance between gradient strength and geometric con-

straints. Rangel et al.�s (2007) recent simulation of avian

biogeography incorporates all of these effects on a complex

map (South America), and incorporates many other �control

knobs� that specify rules for environmental fluctuation,

range fragmentation and extinction, and the inheritance of

the environmental niche characteristics from ancestor to

descendant species.

Although each of the studies discussed here involves

much more detail, specification of just three of the control

knobs in the GSM effectively encompasses and classifies

most published analytical and simulation models in

macroecology.

E S T I M A T I N G , O P T I M I Z I N G A N D I N T E R P R E T I N G

M O D E L P A R A M E T E R S

Even a relatively simple simulation model can potentially

contain many parameters. It is unlikely that all of these can

be estimated independently with empirical data (Ricklefs

2003), so values of such parameters will have to be chosen

on the basis of biological insight, expert opinion or

parsimony. The parameters can then be adjusted or

optimized to generate the best possible fit between the

model output and empirical data. Parameter optimization

for a GSM may be especially computationally intensive

because a large number of model simulations will have to be

run for each parameter combination to estimate the model�s
predicted values of response variables. Moreover, applying

standard algorithms for finding best-fit parameter values

(e.g. simplex, gradient or simulated annealing approaches;

Kelly 1999) is also problematic because GOF surfaces for

these stochastic models will not necessarily be smooth, so

simplex and gradient algorithms may not converge on the

optimal parameter sets. Genetic programming or reverse

engineering algorithms (Bongard & Lipson 2007) may be

needed to efficiently locate optimal (or near-optimal)

parameter combinations.

This strategy of adjusting and optimizing the parameters

would produce a single synthetic model that incorporates

several interacting mechanisms. Such a model would

probably reflect the intuition of many macroecologists

about the multiple factors that affect species richness

(Harrison & Cornell 2007). However, such a model is likely

to be unnecessarily complex. An alternative approach is to

begin �turning off the control knobs� of Table 1, and try to

construct simpler models to account for variation in species

richness. Rather than optimizing parameters to generate a

single complex model, this approach uses the GSM to

generate a suite of simple (null) models that can be viewed

as alternative hypotheses. If there are n binary control

knobs, there are 2n parameter combinations or qualitatively

distinct models. This number may become prohibitively

large for a realistic GSM, but it may not be necessary to test

all model combinations to address the interactions of a few

key mechanisms.

Finally, a comparative approach could be used for a priori

comparisons of taxonomic groups that differ in dispersal

ability or other features, or comparisons of a single

taxonomic group among different biogeographical domains

that differ in geological histories. In this way, the GSM can

be used to explore complex narratives and hypotheses in

historical biogeography (see Future challenges).

D E F I N I N G T H E R E S P O N S E V A R I A B L E

Explaining the observed pattern of species richness per grid

cell is the principal objective for building the GSM. In

theory, different models can be assessed or ranked solely on

the basis of their ability to account for variation in species

richness. However, cases may arise in which two different

models predict a similar pattern of species richness. For

example, an evolutionary model that posits higher speciation

rates closer to the tropics (Rohde 1992; Allen et al. 2002,

2006; Allen & Gillooly 2006), a niche conservatism model

with tropical origins (e.g. Rangel et al. 2007) and an energetic

model that posits more species where there is higher
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temperature or more energy available (Currie et al. 2004)

would all predict a positive correlation between species

richness and temperature.

How can we decide between competing models in such

cases? Grimm et al. (2005) advocate the analysis of multiple

response variables in assessing the output of complex

simulation models. One of the great benefits of using the

GSM is that it can generate many secondary predicted

patterns for analysis. The output from any single run of the

GSM can be organized as a binary presence–absence matrix,

in which columns are the grid cells, rows are species and the

matrix elements represent the presence (1) or absence (0) of

a given species in a particular grid cell (Gotelli 2000).

Traditional metrics derived from presence–absence matrices

include the column sums (yielding the species richness per

site, our primary response variable) and the row sums

(resulting in the number of sites in which each species

occurs). In this context, the row sums represent the

predicted range-size frequency distribution, which can be a

possible secondary response variable (Rangel et al. 2007).

Moving beyond the simple row and column sums,

presence–absence matrices enable the generation of addi-

tional response variables, including the �dispersion field�
(Graves & Rahbek 2005), which is the set of geographical

range sizes of species occurring in a given cell, and the

�diversity field�, which is the set of richness values of cells

within the range of a given species (Arita et al. 2008). Patterns

of dispersion and diversity fields may assist in model

discrimination and evaluation. Other potential response

variables that exploit the structure of the full matrix include

the location of centres of endemism (Jetz et al. 2004), the

degree of nestedness of the species assemblage (Ulrich et al.

2009), measures of beta diversity (Anderson et al. 2006; Jost

2007; Chao et al. 2008), and patterns in the scaling of species

richness, including the species–area relationship (Arita &

Rodriguez 2002; Lyons & Willig 2002).

An entirely different dimension can be added to all these

metrics if rows (species) are classified according to a

phylogeny generated by the model itself, and the geographi-

cal position of columns (grid cells) is explicitly included in

the model. This enables the analysis of response variables in

spatial and temporal evolutionary contexts that might allow

a finer tuning of contrasting models. First, the shapes of the

generated phylogenies themselves can be compared with

observed phylogenies using metrics such as tree balance (e.g.

Heard & Cox 2007) and the pattern of lineage-branching

pattern through time (e.g. White et al. 2006; Alroy 2008;

Phillimore & Price 2008). Second, the phylogenetic com-

munity structure (sensu Webb 2000) of taxa co-occurring in

samples of spatially contiguous cells can be compared

between observed and simulated cases. We expect high

phylogenetic clustering at these biogeographical scales either

when dispersal limitation is high and a spatial signature of

speciation persists for a long time (Graham & Fine 2008) or

when strong environmental gradients are combined with

strong phylogenetic niche conservatism (Wiens & Graham

2005; Losos 2008). Third, specific phylogeographical pat-

terns can be examined: e.g. how often in simulated cases do

taxa within some spatially or environmentally defined region

form a clade of the same size and shape as is seen in the

observed phylogeographical distribution? A latitudinal gra-

dient of species richness could thus be examined, shedding

light on the many competing evolutionary hypotheses that

have been proposed to explain the pattern (Wiens &

Donoghue 2004; Jablonski et al. 2006; Mittelbach et al. 2007;

Arita & Vázquez-Dominguez 2008; Jablonski 2008). Finally,

if additional traits or attributes of species have been

measured, there are numerous indices for describing the

distribution of trait states among terminal taxa (e.g.

Blomberg et al. 2003).

In combination with species richness per cell, all these

secondary patterns facilitate discrimination among models.

However, there are difficulties with this approach because

not all of the response variables are produced by all of the

models, and some models make use of the empirical

distribution of some of the response variables. For example,

the evolutionary model of n independent origins does not

generate a phylogeny; conversely, many simple spreading

dye models use the observed range-size frequency distribu-

tion to generate model predictions, so these variables could

not be used to evaluate models. Indeed, it is arguable that

formal model selection statistics should not be used for any

response variables when comparing, e.g. a model that uses

the observed range size frequency distribution and one that

predicts the range size frequency distribution. An additional

challenge is that models that optimize the fit to one of the

response variables (such as the number of species in each

grid cell) may do so at the expense of others (such as the

range size frequency distribution). Although the GSM

predicts species richness and a number of other macroeco-

logical patterns, it is unclear how much weighting should be

given to secondary patterns for the purposes of assessing

GOF.

A S S E S S I N G M O D E L A D E Q U A C Y A N D C O M P A R I N G

M O D E L S

For a GSM to be useful, we must be able to identify models

that fit the observed data well, to measure the adequacy of

the fit for each model and to rank competing models against

one another in terms of their predictive power. We focus

here on modelling the number of species in each grid cell,

leaving aside other model predictions such as phylogenetic

patterns or range size frequency distributions.

A good model will have little or no bias, meaning that it

will accurately predict observed species richness in each grid
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cell. In the best case scenario, a good model will also be

precise, meaning that repeated stochastic trials of the same

model will generate a small variance in species richness in

each grid cell. A classical measure of the adequacy of a

univariate estimator (UN), calculated from a sample of size

N to estimate a parameter h, is the mean square error (MSE,

e.g. Lehmann & Casella 1998), which includes the two

components of bias and variance:

MSE ¼EðUN � hÞ2

¼½EðUN Þ � h�2 þ VarðUN Þ
¼½BiasðUN Þ�2 þ VarðUN Þ

For our purposes, we shall ignore measurement error and

treat the observed data as the �parameters� to be estimated

by the model. Although more complex models may be more

accurate, they may also generate greater variances among

simulation trials and therefore be less precise. On the other

hand, simpler models may be less variable among repeated

simulation trials but may also be less accurate. The MSE

therefore identifies models that strike a good balance

between accuracy and parsimony.

The observed (empirical) data consist of a discrete count

of the number of species within each of c grid cells on a two-

dimensional surface, which we will denote by the vector O,

with elements O1, O2, …, Oc. Similarly, for a given model, a

single stochastic outcome from a simulation of the model

produces a species richness value within each of these grid

cells. Let N be the number of simulations and Sik be the

value in the kth grid cell (k = 1,…, c) for the ith simulation

(i = 1,…, N). An individual simulation surface will be

denoted Si, which, like O, is a vector of length c. For a large

number of independent, stochastic simulations (say,

N = 10 000), the estimated expectation for the kth grid

cell is the average species richness:

Ek � 1
N

XN
i ¼ 1

Sik

We denote the vector of these expectations (also of length c)

as E.

Each vector of richness values can be represented as a

point in c-dimensional space. From this perspective, the

squared Euclidean distance from E to O, here denoted by

[D(O, E)]2, measures bias because it is the sum of the

squared deviations of the observed species richness (O)

from the expected species richness predicted by the model

(E):

X
ðbiasÞ2 ¼ ½DðO;EÞ�2 ¼

Xc

k¼ 1

ðOk � EkÞ2

We can then calculate a measure of the variability or

(thinking geometrically) the relative dispersion of the

simulation points Si in multivariate space (Anderson 2006).

The Euclidean distance from simulation surface Si to the

average surface (or centroid) for all simulations from that

model is D(Si, E). Dispersion is then calculated as the sum

of squared distances from the individual simulation vectors

to their centroid E, divided by (N ) 1). This dispersion is

equal to the sum (across all cells) of the variances in the

simulation values (calculated within each cell):

X
ðvarÞ ¼ 1

ðN�1Þ

XN
i ¼ 1

½DðSi ;EÞ�2

To compare the models directly with one another for their

predictive capability, we can use the sum of the MSEs, as

follows:

X
ðMSEsÞ ¼ ½DðO;EÞ�2 þ 1

ðN�1Þ

XN
i ¼ 1

½DðSi ;EÞ�2

Better models will have smaller values for this sum, which

includes the components of bias ([D(O, E)]2) and impreci-

sion ( 1
ðN�1Þ

PN
i¼1 ½DðSi ;EÞ�2). This index should not be

used to compare models if the parameters used in the

models were themselves estimated from the observed data.

It can, however, be used to compare mechanistic models

that incorporate parameters that were derived independently

of the observed data. Models can be ranked on the basis of

this index or other metrics that implicitly or explicitly

measure and trade off accuracy vs. precision.

In addition to ranking a set of models according to their

precision and low bias, it will often be informative to assess

the adequacy of a single model against the data. For testing

the GOF of a particular model based on count data such as

species richness, we suggest using the Kullback–Leibler (or

K–L) distance (Kullback & Leibler 1951). The K–L distance

[K(O,E)] compares the observed (empirical) data O with

species richness predicted by the model, E:

K ðO;EÞ ¼ log
nE

nO

� �
þ 1

nO

Xc

k¼ 1

Ok log
Ok

Ek

� �

where nE ¼
P

k Ek and nO ¼
P

k Ok. For models in which

the observed range size frequency distribution is preserved,

nE = nO, so the first term collapses to zero, and the K–L

distance depends only on the difference between the ob-

served and predicted species richness for each grid cell. The

K–L distance test differs by only a constant multiplier from

a likelihood ratio test of a given model vs. a saturated model

(see p. 336 in Burnham & Anderson 2002).

The next step is to assess the distribution of the K–L

distances under the null hypothesis that the model is correct

(i.e. its output accurately matches the empirical data). An

intuitive way to estimate this distribution is to simulate a

large number of data sets (S1, S2, …, Si,…, SN) that do

conform exactly to the model�s assumptions, and then
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calculate the K–L distances associated with the simulated

data sets (Tsay 1992; Waller et al. 2003). These K–L

distances K(Si, E), i = 1, 2, …, N form a parametric

bootstrap distribution (Efron & Tibshirani 1993; White

2002) that can be used directly for hypothesis testing. The

P-value is estimated directly as the proportion of simulated

K(Si, E) distances that is greater than or equal to K(O, E).

This empirical testing procedure assumes that simulations

are independent of one another, but (importantly) does not

assume independence among the cells within a given

simulation, nor does it make any assumption about the

nature of the distribution of the K–L distances.

Analyses such as comparisons of MSE values and tests

based on K–L distances will allow investigators to quantify

the accuracy and precision of different simulation models, to

rank competing models and to perform GOF tests for

individual models. These tests can be performed on

contemporary species distributions and environmental vari-

ables, but they can also be adapted for evaluating changes in

species richness through time. In addition, diagnostic tools

and residual plots can be used to identify individual grid cells

or geographical regions in which a model�s predictions

consistently overestimate or underestimate species richness.

F U T U R E C H A L L E N G E S

We have argued that stochastic simulation models of species

occurrences provide a powerful complement to traditional

curve-fitting and more recent bioclimatic species distribution

modelling. However, the GSM is not a panacea. As with

traditional curve fitting and bioclimatic species distribution

modelling, the results will be sensitive to the spatial scale and

taxonomic resolution of the data. Moreover, our ability to

test historical hypotheses will be limited by the availability of

good phylogenies and (especially) environmental data layers

for historical climates. Nevertheless, simulation models hold

great promise for understanding the role of historical and

contemporary forces in shaping species richness patterns and

for projecting species richness under climate change.

In closing, we note that the subdiscipline of historical

biogeography (Morrone & Crisci 1995) also has tried to link

patterns of species diversity to historical and evolutionary

processes through the mapping of contemporary diversity

on phylogenies, areograms and vicariant events (Platnick &

Nelson 1978; Rosen 1978; Nelson & Platnick 1980).

Perhaps the development of a detailed GSM will provide

a conceptual bridge between macroecology and historical

biogeography (Brooks 1990; Cracraft 1994).

A C K N O W L E D G E M E N T S

This study is a contribution of the Synthetic Macroecolog-

ical Models of Species Diversity Working Group supported

by the National Center for Ecological Analysis and

Synthesis, a Center funded by NSF (Grant #DEB-

0553768), the University of California, Santa Barbara and

the State of California. Additional funding for group

meetings was provided by the Australian Research Council

Environmental Futures Network. Gotelli was supported by

NSF DEB-0541936, and Colwell and Rangel were sup-

ported by NSF DEB-0072702. We thank D. Nogues-Bravo,

W. Thuiller and two anonymous referees for comments that

improved the manuscript.

R E F E R E N C E S

Allen, A.P. & Gillooly, J.F. (2006). Assessing latitudinal gradients in

speciation rates and biodiversity at the global scale. Ecol. Lett., 9,

947–954.

Allen, A.P., Brown, J.H. & Gillooly, J.F. (2002). Global biodiver-

sity, biochemical kinetics, and the energetic-equivalence rule.

Science, 297, 1545–1548.

Allen, A.P., Gillooly, J.F., Savage, V.M. & Brown, J.H. (2006).

Kinetic effects of temperature on rates of genetic divergence and

speciation. Proc. Natl Acad. Sci. USA, 105, 9130–9135.

Alroy, J. (2008). Dynamics of origination and extinction in the

marine fossil record. Proc. Natl Acad. Sci. USA, 208, 11536–11542.

Anderson, M.J. (2006). Distance-based tests for homogeneity of

multivariate dispersions. Biometrics, 62, 245–253.

Anderson, M.J., Ellingsen, K.E. & McArdle, B.H. (2006). Multi-

variate dispersion as a measure of beta diversity. Ecol. Lett., 9,

683–693.
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