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Abstract

Geographical patterns of species diversity have been examined using mid-domain null models, in which the ranges of individual

species are simulated by randomly arranging them on a bounded one- or two-dimensional continent. These models have shown that

structured patterns in the geographical distribution of biodiversity can arise even under a fully stochastic procedure. In particular,

mid-domain models have demonstrated that the random generation of ranges of different sizes and locations can produce a gradient

of species diversity similar to the one found in real assemblages, with a peak at the middle of a continent. A less explored feature of

mid-domain models is the pattern of range-size frequency distribution. Numerical simulations have provided some insights about

the geographic pattern of average range size, but no exploration of the shape of range-size frequency distributions has been carried

out. Here I present analytical and numerical models that generate explicit predictions for patterns of range size under the

assumptions of mid-domain models of species diversity. Some generalizations include: (1) Mid-domain models predict no

geographic gradient of average range size; the mean range size of species occurring at any point on a continent is constant (0.5 of the

extent of the continent in the one-dimensional model, 0.25 of the area of the continent in the two-dimensional case); (2) Variance in

range size is lowest at the middle of a continent and highest near the corners of a square-shaped continent; (3) The range-size

frequency distribution is highly right-skewed at any point of a continent, but the skewness is highest near the corners. Despite their

alleged weaknesses, mid-domain models are adequate null models against which real-world patterns can be contrasted.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the oldest and most thoroughly studied
patterns of biogeography is the tendency for species
richness (the number of species occurring at a given site)
to increase from the poles towards the tropics (Hawkins,
2001; Willig et al., 2003). More than 30 evolutionary and
ecological hypotheses have been posed to explain this
gradient of species diversity (Hawkins et al., 2003), and
there is no single best explaining cause for it, as the
details of the gradient vary with geographic location,
scale, and geological history of the area of study. A
related pattern, the latitudinal gradient of the size of
species ranges, has been the focus of interest since
e front matter r 2004 Elsevier Ltd. All rights reserved.
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Stevens (1989) proposed the so-called Rapoport’s rule as
a possible explanation for the higher species richness in
the tropics. The rule postulates that, on average, tropical
species have smaller ranges than temperate taxa, due to
the tolerance of temperate species to a broader gamut of
environmental conditions. Rapoport’s ‘‘rule’’ has been
shown to apply for some groups in some continents, but
exceptions are numerous, and its generality has been
seriously questioned (Gaston et al., 1998; Kerr, 1999;
Gaston, 2003).
A new perspective to the study of latitudinal gradients

of species richness came from the mid-domain models
developed during the 1990s (Colwell and Hurtt 1994;
Willig and Lyons, 1998; Lees et al., 1999; Colwell and
Lees, 2000; Laurie and Silander, 2002; Grytnes, 2003;
Colwell et al., 2004; Pimm and Brown, 2004). These
models, which use randomization algorithms to simulate
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Fig. 1. The geographic distribution of species as represented in one-

dimensional mid-domain models. A bounded continent is modeled by

a domain on the interval (0, 1). The ranges of species are represented

with lines, five of which are pictured here, lying within the domain.

Species richness at a given point p is the count of ranges that intersect

that point. The size and position of each range are determined by

generating two random points (L1, L2) along the domain. The

midpoint of each range (M) is the average value of L1 and L2, and

the range size (R) is the distance between those points.

H.T. Arita / Journal of Theoretical Biology 232 (2005) 119–126120
the spatial arrangement of species within a bounded
domain that represents a continent, predict patterns for
the latitudinal gradient of species richness that in some
cases seems to coincide with reality (Lees et al. 1999;
Colwell and Lees, 2000; McCain, 2003). In particular,
due to geometric constraints imposed by hard bound-
aries to the distribution of species, models predict a
parabolic curve of species richness, with a peak of 0.5
times the total number of species at the center of a
latitudinal gradient, similar to that found in real
continents. In two-dimensional models, a similar peak
in species richness, with a maximum value of 0.25 times
the total number of species, appears in the center of a
bounded domain defined by a latitude and a longitude
(Bokma et al., 2001). The name ‘‘mid-domain models’’
comes from these predicted patterns of highest richness
at the middle of the gradient.
Although the focus of mid-domain models has been

on the gradient of species richness, the models also
predict particular patterns for the latitudinal gradient of
range sizes (Lyons and Willig, 1997; Colwell and Lees,
2000; Koleff and Gaston, 2001). In particular, numerical
simulations generate no gradient at all if the average
range of species intersecting a given latitude is used as
the metric, following Stevens (1989), or a reversed
Rapoport pattern if the metric used is the average range
of species whose range midpoint coincides with the focal
latitude, following the method of Rohde et al. (1993).
The focus has been on the pattern of average range size
as a function of latitude, but the pattern of variation at
each latitude has not been examined. Also, the discus-
sion has centered mostly on one-dimensional domains.
The study of range-size frequency distributions has

important theoretical and practical implications,
although the details of such distributions are still very
poorly understood (Gaston, 2003). At the global and
continental scales, several mathematical models have
been tested to describe the patterns of range-size
frequency distribution, but no general model has been
developed (Williamson and Gaston, 1999). At the
regional and local scales, the patterns of range-size
variation among species are linked to a wide variety of
macroecological parameters, such as the slope z of
species–area relationships (Rosenzweig, 1995; Ney-Nifle
andMangel, 1999; Lyons andWillig, 2002), beta diversity
(Rodrı́guez and Arita, 2004), and in general to the
patterns in the scaling of species diversity (Arita and
Rodrı́guez, 2002). Additionally, in conservation planning,
local and regional range-size frequency distributions are
key tools in the identification of rare species, those taxa
with the most restricted distributions among a particular
set (Gaston, 2003). In all those cases, the value of the
average range is of little use, and a full description of the
frequency distribution of range sizes is needed.
Surprisingly, very little theoretical or empirical work

has been done to explore the relationship between
continental, regional, and local patterns of range-size
variation. In particular, no model has explored the
implications of mid-domain models on the detailed
shape of range-size frequency distributions, and the
emphasis up to now has been on numerical simulations
focusing only on average range, and limited to the one-
dimensional case. Here I develop analytical models
allowing the prediction of the exact frequency distribu-
tion of range sizes for species occurring at different
latitudinal positions under the assumptions of a fully
stochastic one-dimensional mid-domain model. Addi-
tionally, I explore theoretical implications of mid-
domain models for the two-dimensional case, for which
no description of the predicted range-size frequency
distribution had been previously reported.
2. The one-dimensional case

The model is based on the one-dimensional fully
stochastic mid-domain model developed by Colwell and
Hurtt (1994), Willig and Lyons (1998), and Colwell and
Lees (2000). In this model, a continent is simulated by a
domain on the interval (0, 1), and the ranges of a set of
species are modeled by lines arranged within the domain
(Fig. 1). The continent is bounded by ‘‘hard’’ limits, so
species cannot occur outside the (0, 1) domain. Each
range is defined by the limits L1 and L2 (0pL1,L2;
L24L1), so the size of the range (the length of the
corresponding line) is R ¼ L2 � L1; and the midpoint is
M ¼ ðL1 þ L2Þ=2: For a given point p along the domain,
which is analogous to a latitude, the species richness is
the number of lines intersecting that point.
The fully stochastic mid-domain model consists in

generating species ranges that are randomly located
along the domain. To do so, Colwell and Hurtt (1994),
in their model 2, proposed a method in which points
(M, R) are randomly selected from the universe of all
possible pairs of values, which are arranged on an
isosceles triangle on an M vs. R plot (Fig. 2).
Alternatively, the range of each species can be defined
by the position of its extreme points (L1 and L2; Willig
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Fig. 2. Two ways of representing permissible values for species ranges

arranged on a one-dimensional domain. Possible pairs of (location of

midpoint M, range size R) values arrange on a triangle defined by the

points (0, 0), (1, 0), and (0.5, 1) (a). Points for which Ror, where r is an

arbitrary value, lie below a horizontal line (shaded area). Points (y1, y2)

constituting the extremes of species ranges form a unit square on a (y1,

y2) plot (b). Points for which the range size R=|Y2�Y1| is equal to a

constant r generate pairs of straight lines with slope 1 and Y2intercept

equal to 7r. The probability P(Rpr) is equal to the shaded area

bounded by the two parallel lines.
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and Lyons, 1998; Colwell and Lees, 2000). To generate a
species range, two points (Y1, Y2) are randomly placed
along the domain, such that L1 ¼ MINðY 1;Y 2Þ and
L2 ¼ MAX ðY 1;Y 2Þ: Thus, for each Yi the density func-
tion is f ðyÞ ¼ 1ð0pyp1Þ; and, because Y1 and Y2 are
independent, their joint density is f ðy1;y2Þ ¼ f ðy1Þ

f ðy2Þ ¼ 1: The range size R is the latitudinal extent
and is a function of Y1 and Y2, RðY 1;Y 2Þ ¼

MAX ðY 1;Y 2Þ�MINðY 1;Y 2Þ ¼ jY 1 � Y 2j; so 0pRp1:
The universe of possible values for Y1, Y2 can be
represented by a unit square (Fig. 2).

2.1. Continental frequency distribution of range sizes

To deduce the frequency distribution of range sizes,
we need to find F RðrÞ ¼ PðRprÞ; where r is an arbitrary
limit (0prp1). FR(r) can be found using either the M vs.
R plot of Colwell and Hurtt (1994) or a model based on
the extreme points of species ranges (a ‘‘two-hit’’
model). Here I develop the latter option, because the
procedure will be required in other sections of the paper.
However, a similar demonstration, with identical results,
is possible using the triangular model. In Fig. 2a, it is
easy to see that the region over which Rpr is the set of
points of the triangle below an arbitrary line r, so FR(r)
is the shaded area proportional to the area of the
triangle of permissible M, R points.
Using the two-hit model, to find FR(r) we need to

define the points (y1, y2) for which |y1�y2|pr. These
points correspond to the shaded area in Fig. 2b.
Arbitrarily defining y2 as the dependent variable, pairs
of values yielding a constant r value arrange along
straight lines with slope=1 and intercept y2=r (for
y2Xy1) or y2=�r (for y2py1). Because the bivariate
density function f(y1, y2)=1 is uniform over the square
0py1p1, 0py2p1, the distribution function FR(r)=
P(Ror) is the volume of a solid with height equal to 1
and cross section equal to the shaded area shown in Fig.
2b. Therefore,

F RðrÞ ¼ PðRorÞ ¼

Z Z
jy1�y2jor

f ðy1; y2Þdy1 dy2

¼

Z Z
jy1;y2jor

ð1Þdy1 dy2: ð1Þ

Although the distribution function can be obtained by
integration, it is easier to find the result using simple
geometry. Since the side of the triangles not shaded in
Fig. 2b is 1�r, it is easy to show that the distribution
function is FR(r)=1�(1�r)2=2r�r2. Thus, the density
function is:

f RðrÞ ¼
d

dr
ð2r � r2Þ ¼ 2� 2r; (2)

the expected value for R is

EðRÞ ¼

Z 1

0

rð2� 2rÞdr ¼ 1=3: (3)

and the variance is

V ðRÞ ¼ EðR2Þ � ½EðRÞ�2 ¼

Z 1

0

r2ð2� 2rÞdr � ð1=3Þ2

¼ 1=18 ð4Þ

Thus, the frequency distribution of the size of ranges
is a linear decreasing function of range size, with a mean
value of 0.33 and variance 0.055. According to the fully
stochastic model, then, species with small ranges should
be more common than widespread species on a
continental scale. Colwell and Hurtt (1994) reported
this distribution based on numerical simulations. Before
that, MacArthur (1957) reported Eq. (2) but, in the
context of his analysis of the relative abundance of
species, went no further in exploring the implications of
bounded limits on the frequency distribution of abun-
dances (Colwell and Lees, 2000).

2.2. Frequency distribution of range size at a given

latitude

Next, we are interested in finding the frequency
distribution of ranges for species occurring at a given
point p (‘‘latitude’’) located along the domain. I describe
in detail the procedure to find the distribution for the
case where pp0.5, and present the general formula for
any p. The probability that a range defined by two
random variables Y1, Y2 on the interval (0, 1) intersects
a point p is P=2p�2p2 (Willig and Lyons, 1998; Colwell
and Lees, 2000). The rationale is that in order for the
range of a species to intersect p, its limits L1=MIN(y1,
y2) and L2=MAX(y1, y2) must be in opposite sides of p.
Therefore, the probability of intersection is one minus
the probability P(y1, y2op)=p2 minus the probability
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Fig. 4. Density function of range size in a one-dimensional mid-

domain model. Function for all species in a continent under the fully

stochastic mid-domain model (a). The same function for species whose

range intersect a given point p=0.1 or 0.9, 0.3 or 0.7, and 0.5 along the

domain on the interval (0, 1) (b).
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P(y1, y24p)=(1�p)2. This approach is illustrated in
Fig. 3b, where points forming ranges intersecting point p

lie on the two rectangles of area p(1�p), which add up to
2p�2p2. Values for which the range Rpor for a given p

(shaded areas in Fig. 3) are defined by these rectangles
and by the two lines shown in Fig. 2b.
When obtaining the distribution function of Rp,

because of geometric constraints, two different cases
(pp0.5 and pX0.5), with three variants each, are
possible. For pp0.5, the three possible outcomes yield
the following distribution functions:

FRp
ðrÞ ¼

r2

2ðp�p2Þ
for rpp;

r�p=2
1�p

for pprpð1� pÞ;

1� 1
2ðp�p2Þ

þ r
p�p2

� r2

2ðp�p2Þ
for rXð1� pÞ;

8>>><
>>>:

(5)

which correspond to the following density functions:

f RP
¼

r
p�p2

for rpp;

1
1�p

for pprpð1� pÞ;

1�r
p�p2

for rXð1� pÞ;

8>><
>>:

(6)

Therefore, the expected value and variance for Rp are:

EðRpÞ ¼

Z 1

0

rf Rp
ðrÞdr

¼

Z p

0

r2

p � p2

� �
dr þ

Z 1�p

p

r

1� p

� �
dr

þ

Z 1

1�p

rð1� rÞ

p � p2

� �
dr ¼

1

2
;

V ðRpÞ ¼ EðR2
pÞ � ½EðRpÞ�

2

¼

Z 1

0

r2f Rp
ðrÞdr � ð1=2Þ2 ¼

1� 2ðp � p2Þ

12
: ð7Þ
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Fig. 3. Two graphic representations of the probability of a given range

size in mid-domain models. Probability that Rpr for ranges

intersecting the point p along the domain on the interval (0, 1) is

equal to the shaded area on the triangle formed by permissible (M, R)

points, divided by the area of the triangle (a). The same probability

shown for the ‘‘two-hit’’ model: shaded areas on the unit square

defined by a sample (Y2, Y1) of size n ¼ 2 from the uniform

distribution (b). Both figures show the case where pprp(1�p).
With a similar approach, the case where pX0.5 yields:

EðRpÞ ¼

Z 1

0

rf Rp
ðrÞdr ¼

Z 1�p

0

r2

p � p2

� �
dr

þ

Z p

1�p

rð1� pÞ

p � p2

� �
dr þ

Z 1

p

r � r2

p � p2

� �
dr ¼

1

2
;

V ðRpÞ ¼
1� 2ðp � p2Þ

12
: ð8Þ

Identical results can be obtained from the triangular
model (Fig. 3a). Points corresponding to ranges inter-
secting point p are bounded by lines crossing the point
(p, 0) and having slopes 72, and by the sides of the
triangle of permissible M, R points (Laurie and Silander,
2002). It can be shown that the possible combinations of
lines yield exactly the two cases with three variants each
found for the two-hit model, and therefore derive also
into Eqs. (5)–(8).
The density functions for several values of p are

shown in Fig. 4b. Note that functions for points p and
1�p have identical values, and that the expected value
for range size is constant regardless of the value of p.
This finding coincides with the numerical results of
Colwell and Hurtt (1994) and Willig and Lyons (1998)
that the fully stochastic model predicts no gradient
of average range size along the domain. However,
previous studies had not examined the pattern of
variation from the mean. Here I show that the fully
stochastic mid-domain model predicts the existence of a
gradient in the variance of the range-size frequency
distribution, this being lowest (1/24) at the middle of the
gradient and highest (1/12) at both ends of the
latitudinal gradient.
3. The two-dimensional model

3.1. Area of range at the continental scale

The model discussed in section 2 can be readily
extended to a two-dimensional case simply by imagining
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a square-shaped continent forming a two-dimensional
domain on the interval (0, 1). The range of a species in
this continent will be a rectangle defined by four points
(Y1, Y2, X1, X2), two in each dimension of the domain,
which are independent random variables drawn
from the uniform distribution on the interval (0, 1).
As in the one-dimensional model, the range of a
species has a given extent in each dimension (Ry,Rx),
defined by the position of the Y1, Y2, X1, X2 as
Ry=MAX(Y1, Y2)�MIN(Y1, Y2) Rx=MAX(X1, X2)�
MIN(X1, X2). We know that the variables are indepen-
dent, and from Eq. (2), that the density function for
each range along one of the dimensions is f Ri

ðriÞ ¼

2ð1� riÞ (0prip1). Therefore, the joint density function
is given by:

f RxRy
ðrx; ryÞ ¼ f ðrxÞf ðryÞ ¼ 4ð1� rxÞð1� ryÞ: (9)

We define the area of the range as A=RxRy, and
need to find FA(a)=P(Aoa), where a is an arbitrary
limit. The region over which f(rx,ry) is non-zero is a
square of side 1. The line rxry=a, for 0pap1, is a
hyperbolic curve under which any point (rx,ry) will
satisfy rxrypa (Fig. 5a). Therefore, for 0pap1,
FA(a)=P(rxryoa) will be the volume defined by
the integral below the line rxry=a and the joint den-
sity function. Hence, the distribution function is
given by:

FAðaÞ ¼

Z 1

a

Z a=rx

0

4ð1� rxÞð1� ryÞdry drx

þ

Z a

0

Z 1

0

4ð1� rxÞð1� ryÞdry drx; ð10Þ

where the first double integral is the volume below the
curve rxry=a on the interval (a, 1), and the second
double integral is the volume above the rectangle to the
left of the curve. The solution is:

FAðaÞ ¼ 5a2 � 4a � 2ð2a þ a2Þ ln a; (11)

so the density function is:

f AðaÞ ¼
d

da
F AðaÞ ¼ 8ða � 1Þ � 4ða þ 1Þ ln a; (12)

and the expected value and variance of the distribu-
tion are:

EðAÞ ¼

Z 1

0

af AðaÞda

¼

Z 1

0

a 8ða � 1Þ � 4ða þ 1Þ ln a½ �da ¼
1

9
;

V ðAÞ ¼

Z 1

0

a2f AðaÞda �
1

9

� 	2

¼
1

36
�

1

81
¼ 0:0154: ð13Þ
3.2. Area of range at a given point

The species richness at any point pxy=(px, py), where
px and py are coordinates on the two-dimensional square
continent can be predicted under the fully stochastic
mid-domain model by a simple extension of the
binomial procedure described in Section 2.2. Since the
probability that the range of a species intersects a point
pi on any of the two one-dimensional gradients is
P=2(pi�pi

2), and assuming independence of the dis-
tributions on the two dimensions, then the probability
that the range of a species intersects point pi is
P=4(px�px

2)(py�py
2) (Bokma et al., 2001). The equa-

tion predicts that 1/4 of species will occur at the center
of the continent, and that species richness should decline
towards the ends of the continent following a para-
boloid curve.
The expected value and variance for the area of range

of those species could in principle be deduced for any
point pxy from Eq. (6) and their equivalents when px or
py are40.5. However, given the high number of possible
combinations of pi and r values that should have to be
examined in each case, the procedure would be rather
cumbersome and impractical. Instead, I performed
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numerical simulations in which the ranges of five million
species were defined by generating four random
numbers on the interval (0, 1) to determine the points
Y1, Y2,, X1, X2. Then, for points located within the
square-shaped continent, I calculated the corresponding
species richness, mean area of range, and variance of
range. The following generalizations derive from the
simulation (Fig. 6).
Species richness follows the paraboloid equation

reported above. In the middle of the continent, 25%
of species intersected the point px=py=0.5. In contrast,
only 3.24% occurred in the point px=py=0.1. Average
range is constant regardless of the location of px,y. In all
cases, a mean area of range of 0.250 was obtained from
the simulations, meaning that on average, species
occurring at any given point in the domain occur in
1/4 of the continent. Note that this average range area is
equal to the squared value of the expected mean linear
range size of the one-dimensional case (Eq. (7)). In
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Fig. 6. Range-area frequency distributions at four points on a two-

dimensional domain derived by randomly locating the range of five

million species. Case where (px, py)=(0.1, 0.1); 3.24% of species, mean

range area �A=0.25, variance S2
A=0.039, skewness g1=1.61 (a). Case

where (px, py)=(0.1, 0.3); 7.56% of species, mean range area �A=0.25,

variance S2
A=0.033, skewness g1=1.53 (b). (px, py)=(0.3, 0.3); 17.6%

of species, mean range area �A=0.25, variance S2
A=0.027, skewness

g1=1.47 (c). (px, py)=(0.5, 0.5); 25% of species, mean range area
�A=0.25, variance S2

A=0.023, skewness g1=1.42 (d).
contrast, variance in area of range was lowest at the
middle of the continent (0.023) and highest near the
corners of the continent; for example, variance was
0.039 in the point (0.1, 0.1). Variance values followed a
symmetrical pattern around the middle of the continent;
for example, points (0.2, 0.6), (0.6, 0.2), (0.2, 0.4), (0.4,
0.2), (0.4, 0.8), (0.6, 0.8), (0.8, 0.4), and (0.8, 0.6) had the
same variance (0.0275 in this case). All frequency
distributions were highly skewed towards large range
sizes. However, skewness was highest close to the
domain limits and lowest at the midpoint of the domain
(Fig. 6).
4. Discussion

The analytical models presented herein confirm
previous observations based on numerical simulations
and provide new predictions regarding the spatial
distribution of species and its consequence on species
richness. Models presented here prove that the fully
stochastic procedure of arranging species on a bounded
continent should generate a pattern in which species
richness peaks at the middle of one-dimensional
domains, declining towards the borders following a
parabolic curve (Willig and Lyons, 1998; Colwell and
Lees, 2000). A similar pattern is demonstrated here for
the two-dimensional case. Also confirmed mathemati-
cally is the observation that under the assumptions of
the fully stochastic model no gradient in average range
size should be observable along a one-dimensional
domain. My numerical simulations also show that the
same pattern can be generalized to the two-dimensional
case.
A pattern that had not been examined in previous

studies is the spatial gradient in the variance of range
sizes and the changes in the shape of the frequency
distribution of range sizes. Because Rapoport’s rule only
predicts a gradient of average range size, very little
attention has been given to variation around that
average. Models presented here caution future
studies contrasting empirical data with the predictions
of mid-domain models to include an analysis of the
shape of range-size histograms at different latitudes,
and not only of the corresponding averages. Results
also imply that the composition of species assemblages
in terms of their rarity (or how small is their range)
should show a latitudinal gradient under the assump-
tions of mid-domain models. In particular, near the
extremes of the domain, the frequency distribution of
range sizes becomes almost uniform, with the same
percentage of restricted (rare) vs. widespread species.
In contrast, in the middle of the domain, the model
predicts that most species will have ranges of inter-
mediate size, with relatively few widespread and
restricted species.
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The two-dimensional model predicts a curvilinear
frequency distribution of range size that contrasts with
the linear decreasing pattern for the unidimensional
case. This curve is very similar to that reported in the
literature for continental assemblages of vertebrates,
which show a unimodal, highly right-skewed species-
range size distribution. The pattern, which has been
dubbed ‘‘a hollow curve’’, and described most fre-
quently using a log-normal curve, is one of the most
pervasive features of the distribution of animal species in
continents (Anderson, 1977; Williamson and Gaston,
1999; Gaston, 2003). The model presented here provides
a new description for species-range size distributions,
and constitutes an adequate null model for empirical
comparisons.
Models that are analogous to those presented here

have been developed to simulate the abundances of
species in ecological communities (the second ‘‘broken
stick’’ model, MacArthur, 1957), the arrangement of the
ranges of species on a continent (Pielou, 1977), the
patterns of use of ecological resources arranged along a
gradient (De Vita, 1979; Sugihara, 1986), and the
flowering patterns of plant species along a temporal
scale (Cole, 1981). However, all of these studies focused
on patterns of overlap to estimate competition between
species. Colwell and Hurtt (1994) were the first to
analyse the number of overlaps on a particular point on
the gradient, thus discovering the mid-domain effect of
species diversity. Subsequently, mid-domain models
have focused mostly on patterns of species diversity.
Models presented here emphasize the spatial variation
in range size, a feature poorly examined in previous
studies.
Mid-domain models constitute a major advance in

our understanding of null models of species richness.
Before them, it was assumed that a random placement
of several species on a continent would yield a uniform
distribution of diversity. The first mid-domain models
showed otherwise, demonstrating that particular pat-
terns of species richness and average range size would
appear even when the extent and position of the ranges
of species were determined at random (Colwell and
Lees, 2000). Therefore, adequate null models should
take into account those ‘‘background’’ patterns. More
recently, some proponents of mid-domain model have
suggested that the models themselves explain much of
the diversity patterns seen in nature (Jetz and Rahbeck,
2001). In contrast, other authors have dismissed mid-
domain models, considering them unrealistic and flawed
(Hawkins and Diniz-Filho, 2002; Zapata et al., 2003).
As other models of ecological systems, mid-domain
models are indeed ‘‘unrealistic’’. However, as other null
models, they do not pretend to reproduce with detail the
processes and patterns that can be seen in nature.
Instead, by simplifying a very complex system, mid-
domain models extract the essential components of
natural patterns. In that sense, they constitute adequate
and perfectly valid null models for ecological studies of
species richness (Colwell et al., 2004).
Regardless of the position that one takes, models

presented here show particular predictions that should
be considered in future analyses of mid-domain models.
In particular, the pattern in which the average range size
remains invariant despite dramatic changes in the
variance and skewness of the frequency distribution
constitute an explicit benchmark against which empiri-
cal data could be compared to test the hypothesis that
random arrangement of species explain much of the
diversity patterns in nature. Skeptics and proponents
alike should find predictions presented here useful for
testing their own ideas to increase our understanding of
geographic patterns of diversity.
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